5 Isometry Groups of Proper Hyperbolic Spaces

نویسنده

  • URSULA HAMENSTÄDT
چکیده

Let X be a proper hyperbolic geodesic metric space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not elementary then for every p ∈ [1, ∞) the second continuous bounded cohomology group H 2 cb (G, L p (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. G R ] 2 9 Ju l 2 00 5 ISOMETRY GROUPS OF PROPER HYPERBOLIC SPACES

Let X be a proper hyperbolic geodesic metric space of bounded growth and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not amenable then the second continuous bounded cohomol-ogy group H 2 cb (G, L 2 (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

متن کامل

. G R ] 3 0 Ju l 2 00 6 ISOMETRY GROUPS OF PROPER HYPERBOLIC SPACES

Let X be a proper hyperbolic geodesic metric space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not elementary then for every p ∈ (1, ∞) the second continuous bounded cohomology group H 2 cb (G, L p (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

متن کامل

. G R ] 1 6 M ar 2 00 8 ISOMETRY GROUPS OF PROPER HYPERBOLIC SPACES

Let X be a proper hyperbolic geodesic metric space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is not elementary then for every p ∈ (1, ∞) the second continuous bounded cohomology group H 2 cb (G, L p (G)) does not vanish. As an application, we derive some structure results for closed subgroups of Iso(X).

متن کامل

Geometry and Dynamics of Discrete Isometry Groups of Higher Rank Symmetric Spaces

For real hyperbolic spaces, the dynamics of individual isometries and the geometry of the limit set of nonelementary discrete isometry groups have been studied in great detail. Most of the results were generalised to discrete isometry groups of simply connected Riemannian manifolds of pinched negative curvature. For symmetric spaces of higher rank, which contain isometrically embedded Euclidean...

متن کامل

Combinatorics of sections of polytopes and Coxeter groups in Lobachevsky spaces

Coxeter classified all discrete isometry groups generated by reflections that act on a Euclidean space or on a sphere of an arbitrary dimension (see [1]). His fundamental work became classical long ago. Lobachevsky spaces (classical hyperbolic spaces) are as symmetric as Euclidean spaces and spheres. However, discrete isometry groups generated by reflections, with fundamental polytopes of finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005